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LETTER TO THE EDITOR 

Path integrals, disordered systems, and some ensuing 
mathematical questions 

Jan Tarskit 
International Centre for Theoretical Physics, 34100 Trieste, Italy 

Received 11 September 1975 

Abstract. The path integral describing a particle in a randomly distributed potential is 
examined. A heuristic discussion is given, which should elucidate the qualitative features 
as well as the mathematical problems of density-of-states calculations. 

1. Introduction 

A standard approach to the problem of density of states in the presence of randomly 
distributed potentials (Edwards and Gulyaev 1964) depends on first expressing the 
Green function as a path integral. It is then customary to approximate this integral by 
the second cumulant (cf Kubo 1962), so as to yield, after an obvious change of variables, 

(1) 

Here the mass is unity, s is the number of spatial dimensions, p is the density of the 
potentials, and the integral is normalized so as to yield unity when p = 0. Further, W 
is the correlation function of the potential V, 

(27Eit)-5/2 1 9(q)exp( )it-’ jO1 drrj2-ipt2 /JO1 dzl ~ Z ~ W ( V ( T I ) - Y ~ ( T ~ ) )  
V(0 )  = W) = 0 

= G(t ; 0,O) ; G(t). 

The density of states is now given by 

If the last integral diverges, the finite part is to be taken. 
In most of the studies of the problem (eg Bezak 1970, Samathiyakanit 1974, and 

references given therein) one proceeds by assuming an explicit expression for V and 
hence for W, and then by evaluating the path integral in (l), which often requires further 
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approximations. Expressions like the following were found for the asymptotic limits 
as E-, & C O :  

n(E) - a , E l i 2  a s E + c c ,  (4a) 

n(E) - a21El-’ exp(-a3E2) as E -+ - x, (4b) 

where the a j  are positive constants. 
However, experience with path integrals has been accumulating, with respect to 

both manipulation and rigour (eg McLaughlin 1972a, Tarski 1975). It appears therefore 
natural to try to extract some information directly from equations (1) and (3). Unevalu- 
ated path integrals, in fact, may well have a greater heuristic value than their approximate 
evaluations. (Unfortunately, a rigorous discussion of (1) could now be given only for a 
very limited class of functions W )  

We discuss here several aspects of the above path integral, of G, and of n. Our hope 
is to make the calculations in cited works more intuitive, and the following points can 
also be considered as conjectures, or as problems for a systematic study. 

2. Analyticity and asymptotics 

Analyticity is known to have far-reaching consequences. Since the path integral is 
characterized by the weight factor exp(* i t -  dTq2), we conjecture analyticity in t when 
Im t < 0, for sufficiently regular functions W. Such analyticity is basic for what follows 
and could perhaps be more easily established by independent methods. Moreover, the 
manifest singularity of G at t = 0 is not expected to be cancelled by the path integral. 

Let us now assume that for t ‘v 0, the integral in (1) is well approximated by setting 
V ( T )  = q(0) = 0 in the integrand. Thus for s = 3, 

( 5 )  

Then the method of stationary phase (eg Erdelyi 1956) suggests that the asymptotic 
behaviour of n(E)  as E + _+ cc is determined by G(t) near t = 0, and one obtains a 
conclusion similar to (4a), 

G(t) rr ( 2 7 ~ i t ) - ~ ’ ~  exp( -$pt2 W(0)). 

n(E)  5 (constant)lE1’/2 as / E (  -, a. (6) 
(An infinite part was eliminated here). 

The fact that for E + - cc one finds n(E) Y c J E J ” ~  rather than n(E) - c I E ~ ~ ’ ~  can be 
understood as follows. For E < 0 one can displace the contour to Im t < 0, where G is 
(presumably) analytic, and then a steepest-descent calculation can give a more precise 
estimate. One does not have this possibility with E > 0, Im t > 0. 

These considerations apply directly to the case of nearly-flat potentials. Let us 
suppose that in some approximation one can set W Y constant 

(7) 
This relation should apply for all t 2 0, in contrast to the situation in (5). Then the 
Fourier transform (3) can be expressed in terms of parabolic cylinder functions (Bezak 
1970), and the combination of asymptotic methods as above leads to the relations (4). 

We make two further remarks. First, analytic continuation of path integrals in the 
time parameter was also considered in connection with problems of barrier penetration 
by McLaughlin (1972b). Second, if we continue (1) analytically to t negative imaginary, 

( W ) ,  so that 

G(t) N (27~it)-‘~’ exp( -&pt2( W ) ) .  
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we obtain a Wiener integral. Such integrals usually are a more versatile tool than the 
path integraf of Feyaman. However, in this case the Wiener integral would not give 
information about n(E) as E -+ a. 

3. Use of Fourier development 

The conditions ~ ( 0 )  = q ( l )  = 0 in (1) suggest that we exploit the sine series, 

~ ( t )  = 1 ~ ~ ( 2 ~ ' ~ / j n )  sinjnr, 
j 

so that 

Jol dt?(t)' = 2 Cf. 
j 

A functional F(rT(. )) in the integrand is then transformed €0 

F(cl, c2, . . .) ; F 

Following the work of Friedrichs and Shapiro (1957), we conjecture that for reasonable 
integrands F ,  

To illustrate such manipulations, let us consider the 6 potential in one dimension, for 
which n(E) has the exponential decrease of the form e x p ( - - ~ l E l ~ / ~ )  as E -+ - cc (rather 
than eCbE2). This problem has been studied extensively from several points of view, but 
the analysis of the corresponding path integral in (1)  remains a challenge. 

This integral remains also very non-trivial in the approximation N = 1 of (9), where 

GO" l)(t) = (2nit)- 1 dc e i ~ 2 / 2 r  exp ( -+pt2 JJo' d t ,  dt ,  ~ f c ' s i n  n t ,  -c'  sin 775,) r , 
Here c' = c2l/,/n, the last exponent reduces to 

exp( - pt21cl - 'K), K = constant > 0, (1 1) 
and then 

This expression does not seem easy to estimate. We note only the following : by making 
the change of variable c -+ ct2 we find this t integral, 

This integral resembles that for Airy functions, which show a slower than Gaussian 
decrease. 
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